Dual Role of Graphene Quantum Dots in Active Layer of Inverted Bulk Heterojunction Organic Photovoltaic Devices
ABSTRACT: Graphene quantum dots (GQDs) have shown broad application prospects in the field of photovoltaic devices due to their unique quantum confinement and edge effects. Here, we prepared GQDs by a photon-Fenton reaction as reported in our previous work, which has great advantage in the preparation scale. The photoelectric properties of the inverted hybrid solar cells based on poly(3-hexylthiophene) (P3HT): (6,6)-phenyl-C 61 butyric acid methylester (PCBM):GQDs and P3HT:GQDs with different contents of GQDs as the active layers are demonstrated, as well as their morphology and structure by atomic force microscopy images. Then, the different roles of GQDs played in the ternary (P3HT:PCBM:GQDs) and binary (P3HT:GQDs) hybrid solar cells are studied systematically. The results indicate that the GQDs provide an efficient excition separation interface and charge transport channel for the improvement of hybrid solar cells. The preliminary exploration and elaboration of the role of GQDs in hybrid solar cells will be bene fi cial to understand the interfacial procedure and improve device performance in the future.